Decentralised treatment of stormwater runoff demonstrator DeTox

Introduction

The treatment of stormwater runoff from heavily frequented roads, or road runoff for short, is an essential component in achieving sustainable wastewater management and protecting natural resources. It is known that the reduction of the fine fraction of total suspended solids (TSS₆₃) makes a decisive contribution to the reduction of pollutant and ecotoxicological loads. This significant reduction is achieved by minimising particle-bound pollutants that could otherwise be released into the environment. Filtration techniques using sand or rock wool, for example, can significantly minimise the TSS₆₃ load and many ecotoxicological drivers.

Methods

Preliminary tests on a laboratory scale

Sedimentation (2h)

Combined processes

Hydrocyclone

· div. filtration

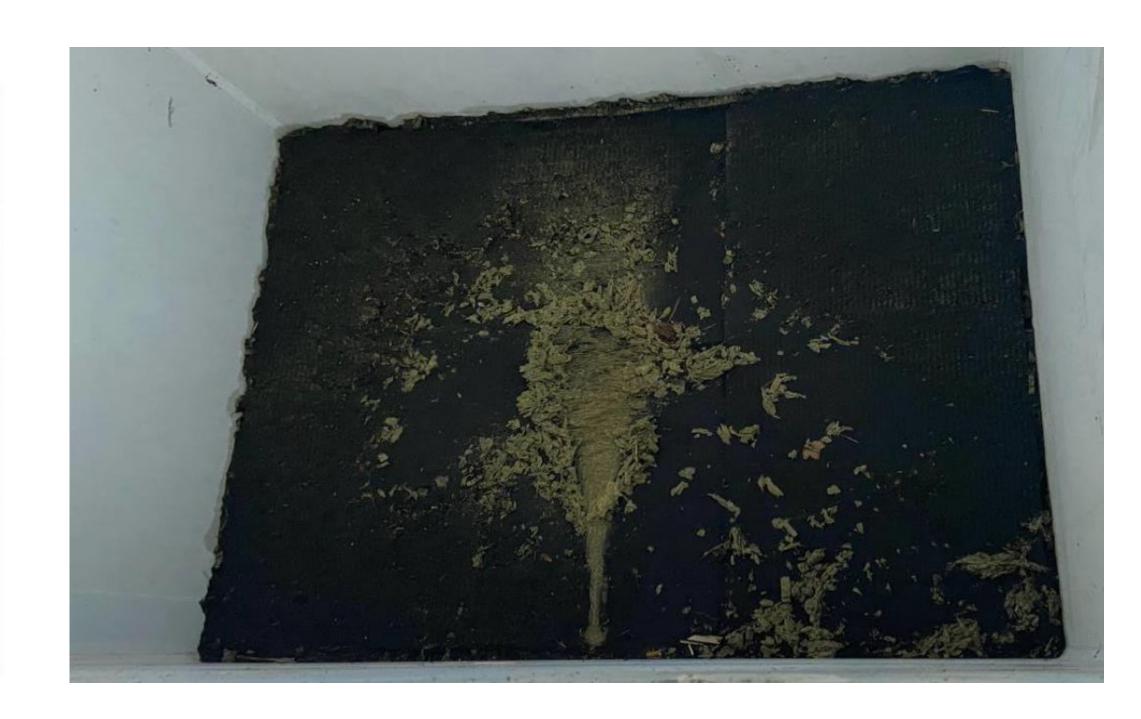
Pilot plant design

2x 4 m³ Retention volume: Filter area: 2x 2m²

Drainage: 30 cm Gravel 2/8 mm Filter layer: 30 cm Rockwool Filter

Results

Efficiency TSS₆₃


Treatment method	n	η _{TSS63} [%]
Sedimentation	5	33
Sedimentation + filtration	3	80
Hydrocyclone	2	23
Hair filtration	2	80
Sand filtration	5	85
Rock wool filtration	4	85

Stormwater runoff before and after filtration through Rockwool filter

Filter cake formation / Maintenance

Conclusion and open questions

- Filtration-based treatment systems achieve the highest treatment performance for TSS₆₃ in laboratory tests
- Pilot plant: Preferential flow paths on rock wool filters lead to higher TSS₆₃ concentrations in the effluent than expected
- Easily scalable modular system, but still needs to be designed in terms of surface area connected
- Open questions: Storage capacity and technology. Possibilities / need for reuse on site still open

Created by: Julia Storath, M.Sc.; apl. Prof. Dr. Volker Linnemann Contact: storath@isa.rwth-aachen.de / 0241 - 275 26 ISA - μ³ Emerging pollutants research center Soers, Krefelder Str. 299, 52070 Aachen E-Mail: labor@isa.rwth-aachen.de

Supported by: ROCKWOOL Rainwater Systems (ROCKWOOL B.V.), Delfstoffenweg 2, 6045 JH Roermond, Niederlande

Institute of Environmental Engineering Univ.-Prof. Dr.-Ing. habil. Thomas Wintgens